Nondistributive rings

Małgorzata E. Hryniewicka

Institute of Mathematics, University of Biatystok
Ciołkowskiego 1M, 15-245 Białystok, Poland
e-mail: margitt@math.uwb.edu.pl

Definition. By a ring we mean a set R of no fewer than two elements, together with two binary operations called the addition and multiplication, in which
(1) R is an abelian group with respect to the addition.
(2) R is a semigroup with unit with respect to the multiplication.
(3) $(x+y) z=x z+y z$ and $x(y+z)=x y+x z$ for all $x, y, z \in R$.

From the last postulate

$$
0 x=(0+0) x=0 x+0 x \text { and } x 0=x(0+0)=x 0+x 0
$$

it follows that

$$
0 x=x 0=0
$$

for every $x \in R$.

Example. For an abelian additive group G, we denote by $\operatorname{End}(G)$ the set of group endomorphisms of G. With the addition defined by

$$
(f+g)(x)=f(x)+g(x)
$$

and the multiplication defined by

$$
(f g)(x)=f(g(x))
$$

for all $f, g \in \operatorname{End}(G)$ and $x \in G$, the set $\operatorname{End}(G)$ forms a ring.
The left distributiveness in $\operatorname{End}(G)$ follows from the additivity of group endomorphisms

$$
(f(g+h))(x)=f(g(x)+h(x))=f(g(x))+f(h(x))=(f g+f h)(x)
$$

for all $f, g, h \in \operatorname{End}(G)$ and $x \in G$.
From the additivity of group endomorphisms

$$
f(0)=f(0+0)=f(0)+f(0)
$$

it follows that

$$
f(0)=0
$$

for every $f \in \operatorname{End}(G)$.

Example. For a (not necessarily abelian) additive group G, we denote by $M_{0}(G)$ the set of maps from G into itself preserving 0

$$
M_{0}(G)=\{f: G \rightarrow G \mid f(0)=0\}
$$

With the addition defined by

$$
(f+g)(x)=f(x)+g(x)
$$

for all $f, g \in M_{0}(G)$ and $x \in G$, the set $M_{0}(G)$ forms a (not necessarily abelian) group.

With the multiplication defined by

$$
(f g)(x)=f(g(x))
$$

for all $f, g \in M_{0}(G)$ and $x \in G$, the set $M_{0}(G)$ forms a semigroup with unit $i d_{G}: G \rightarrow G, i d_{G}(x)=x$ for every $x \in G$.

The right distributiveness in $M_{0}(G)$ follows from both definitions of the addition and multiplication in $M_{0}(G)$

$$
((f+g) h)(x)=(f+g)(h(x))=f(h(x))+g(h(x))=(f h+g h)(x)
$$

for all $f, g, h \in M_{0}(G)$ and $x \in G$.
The left distributiveness in $M_{0}(G)$ does not hold

$$
(f(g+h))(x)=f(g(x)+h(x)) \neq f(g(x))+f(h(x))=(f g+f h)(x)
$$ where $f, g, h \in M_{0}(G)$ and $x \in G$, unless f is a group endomorphism of G.

For the zero map $\mathrm{O}_{G}: G \rightarrow G, \mathrm{O}_{G}(x)=0$ where $x \in G$, from the definition of the set $M_{0}(G)$, it follows that

$$
\left(f 0_{G}\right)(x)=f(0)=0=0_{G}(x)
$$

for all $f \in M_{0}(G)$ and $x \in G$.

Definition. By a near ring we mean a set N of no fewer than two elements, together with two binary operations called the addition and multiplication, in which
(1) N is a (not necessarily abelian) group with respect to the addition.
(2) N is a semigroup with unit with respect to the multiplication.
(3) $(x+y) z=x z+y z$ for all $x, y, z \in N$.
(4) $x 0=0$ for every $x \in N$. This postulate means that we require a near ring to be zerosymmetric.

From the third postulate $0 x=(0+0) x=0 x+0 x$, it follows that

$$
0 x=0
$$

for every $x \in R$.

Definition. By a nondistributive ring we mean a set N of no fewer than two elements, together with two binary operations called the addition and multiplication, in which
(1) N is a (not necessarily abelian) group with respect to the addition, with the neutral element denoted by 0 .
(2) N is a semigroup with unit with respect to the multiplication, with the neutral element denoted by 1 .
(3) $0 x=x 0=0$ for every $x \in N$. This postulate is called zerosymmetric.

We say that a nondistributive ring is abelian (respectively, commutative) if the additive group mentioned above is abelian (respectively, the multiplicative semigroup mentioned above is commutative).

Example. For a nonempty set X with a fixed element 0 , we denote by $M a p_{0}(X)$ the set of maps from X into itself preserving 0

$$
\operatorname{Map}_{0}(X)=\{f: X \rightarrow X \mid f(0)=0\}
$$

With the multiplication defined by

$$
(f g)(x)=f(g(x))
$$

for all $f, g \in \operatorname{Map} p_{0}(X)$ and $x \in X$, the set $\operatorname{Map}_{0}(X)$ forms a semigroup with unit $i d_{X}: X \rightarrow X, i d_{X}(x)=x$ for every $x \in X$.

For the zero map $0_{X}: X \rightarrow X, 0_{X}(x)=0$ where $x \in X$, we have

$$
\left(0_{X} f\right)(x)=0=0_{X}(x)
$$

and

$$
\left(f 0_{X}\right)(x)=f(0)=0=0_{X}(x)
$$

where $f \in M a p_{0}(X)$ and $x \in X$.

Assume that elements of the set $\operatorname{Map} p_{0}(X)$ are indexed by elements of an additive group G, with the zero $\operatorname{map} 0_{X}=f_{0}$. We can make the above assumption, since every nonempty set admits a group structure (the statement is equivalent to the Axiom of Choice). With the addition defined by

$$
f_{a}+f_{b}=f_{a+b}
$$

for all $a, b \in G$, the set $\operatorname{Map}_{0}(X)$ forms a group with the neutral element $f_{0}=0_{X}$.

All of this means that the set $\operatorname{Map}(X)$ together with both operations, the addition and multiplication, defined above is a nondistributive ring.

For a nondistributive ring N, we denote by N^{+}the additive group of N.

A well known result in the ring theory asserts that
(1) every ring R is isomorphic to the ring $\operatorname{End}\left(R_{R}\right)$ of endomorphisms of R viewed as a right module over itself.
(2) $\operatorname{End}\left(R_{R}\right)$ is a subring of the ring $\operatorname{End}\left(R^{+}\right)$of group endomorphisms of R^{+}.

Example. For a nondistributive ring N, we denote by $r \operatorname{Hom}(N)$ the set of right homogeneous maps from N into itself

$$
r . \operatorname{Hom}(N)=\{f: N \rightarrow N \mid f(x n)=f(x) n \text { for all } n, x \in N\} .
$$

With the multiplication defined by

$$
(f g)(x)=f(g(x))
$$

for all $f, g \in r \operatorname{Hom}(N)$ and $x \in N$, the set $r \operatorname{Hom}(N)$ forms a semigroup with unit $i d_{N}: N \rightarrow N, i d_{N}(x)=x$ and zero $0_{N}: N \rightarrow N, 0_{N}(x)=0$ for every $x \in N$.

We define a map $\lambda: N \rightarrow r \operatorname{Hom}(N)$ by sending $m \in N$ to the left multiplication $\lambda_{m}: N \rightarrow N$ on N defined by $\lambda_{m}(x)=m x$ for every $x \in N$. Since

$$
\lambda_{m}(x n)=m(x n)=(m x) n=\lambda_{m}(x) n
$$

for all $m, n, x \in N$, we have indeed $\lambda_{m} \in r . \operatorname{Hom}(N)$. Since $\lambda_{0}=0_{N}, \lambda_{1}=i d_{N}$ and

$$
\lambda_{m n}(x)=(m n) x=m(n x)=\left(\lambda_{m} \lambda_{n}\right)(x)
$$

for all $m, n, x \in N$, it follows that the map λ is a semigroup homomorphism. It is also evident that for all $m, n \in N$ if $\lambda_{m}=\lambda_{n}$, then

$$
m=\lambda_{m}(1)=\lambda_{n}(1)=n
$$

and that

$$
f(x)=f(1) x=\lambda_{f(1)}(x)
$$

for all $f \in \operatorname{r.Hom}(N), x \in N$.

All of this means that $\lambda: N \rightarrow r \operatorname{Hom}(N)$ is a semigroup isomorphism, and, in consequence, elements of the set $\operatorname{r} \operatorname{Hom}(N)$ are indexed by elements of the additive group N^{+}. With the addition defined by

$$
\lambda_{m}+\lambda_{n}=\lambda_{m+n}
$$

for all $m, n \in N^{+}$, the semigroup $r . \operatorname{Hom}(N)$ forms a nondistributive ring isomorphic to N.

Theorem. Every nondistributive ring N embeds into the nondistributive ring $\operatorname{Map} 0(N)$ of maps from N, viewed as a set, into itself preserving 0.

Proof. According to the previous example, the map $\lambda: N \rightarrow r . \operatorname{Hom}(N)$ defined by $\lambda(m)=\lambda_{m}$ for every $m \in N$ is a nondistributive ring isomorphism.

It is also evident that $r \operatorname{Hom}(N)$ is a subsemigroup of the multiplicative semigroup $\operatorname{Map}_{0}(N)$ with unit $i d_{N}$ and zero 0_{N}.

If $\operatorname{Map}_{0}(N)$ is an infinite set and if $\mathcal{F}\left(\operatorname{Map}_{0}(N)\right)$ denotes the ring (without unit) of finite subsets of $\operatorname{Map}_{0}(N)$, then $N^{+} \times \mathcal{F}\left(\operatorname{Map}_{0}(N)\right)^{+}$is a group of order

$$
\left|N^{+} \times \mathcal{F}\left(\operatorname{Map}_{0}(N)\right)^{+}\right|=\left|\mathcal{F}\left(\operatorname{Map}_{0}(N)\right)^{+}\right|=\left|\operatorname{Map}_{0}(N)\right|
$$

which means that elements of the set $\operatorname{Map}_{0}(N)$ can be indexed by elements of the additive group $N^{+} \times \mathcal{F}\left(\operatorname{Map}_{0}(N)\right)^{+}$, with $f_{m}=\lambda_{m}$ for every $m \in N^{+}$. From this we conclude that $r \operatorname{Hom}(N) \subseteq \operatorname{Map}_{0}(N)$ also viewed as nondistributive rings.

The same conclusion holds if $\operatorname{Map}_{0}(N)$ is a finite set.

Example. For a nonempty and finite set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, we denote by $\mathcal{P}(X)$ the family of subsets of X.

With the multiplication defined by

$$
A B=A \cap B
$$

for all $A, B \in \mathcal{P}(X)$, the set $\mathcal{P}(X)$ forms a commutative semigroup with unit X and zero \emptyset.

Assume that elements of the set $\mathcal{P}(X)$ are indexed by elements of $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times$ $\ldots \times \mathbb{Z} / 2 \mathbb{Z}$, the direct product of n-copies of the additive group $\mathbb{Z} / 2 \mathbb{Z}$ as follows: for all $i \in\{1,2, \ldots, n\}$ and $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \in \mathbb{Z} / 2 \mathbb{Z}$ we write $x_{i} \in A_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)}$ if and only if $\varepsilon_{i}=1$. Then the addition defined by

$$
A_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)}+A_{\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)}=A_{\left(\varepsilon_{1}+\eta_{1}, \varepsilon_{2}+\eta_{2}, \ldots, \varepsilon_{n}+\eta_{n}\right)}
$$

coincides with the symmetric difference

$$
\begin{aligned}
A_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)} & \Delta A_{\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)}= \\
& =\left(A_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)} \backslash A_{\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)}\right) \cup\left(A_{\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)} \backslash A_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)}\right)
\end{aligned}
$$

All this means that the set $\mathcal{P}(X)$ together with both operations, the addition and multiplication, defined above is a commutative ring.

Example. Let $\mathcal{P}(X)$ be the same commutative semigroup with unit and zero as previously.

Assume that this time elements of the set $\mathcal{P}(X)$ are indexed by elements of the group $D_{8} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \ldots \times \mathbb{Z} / 2 \mathbb{Z}$, where

$$
\begin{aligned}
& D_{8}=\left\{\sigma_{0}=(1), \sigma_{1}=(1,2,3,4), \sigma_{2}=(1,3)(2,4), \sigma_{3}=(1,4,3,2)\right. \\
&\left.\sigma_{4}=(2,4), \sigma_{5}=(1,2)(3,4), \sigma_{6}=(1,3), \sigma_{7}=(1,4)(2,3)\right\}
\end{aligned}
$$

is the dihedral group of order eight, provided that $\emptyset=A_{\left(\sigma_{0}, 0,0, \ldots, 0\right)}$. With the addition defined by

$$
A_{\left(\sigma_{i}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n-3}\right)}+A_{\left(\sigma_{j}, \eta_{1}, \eta_{2}, \ldots, \eta_{n-3}\right)}=A_{\left(\sigma_{i} \sigma_{j}, \varepsilon_{1}+\eta_{1}, \varepsilon_{2}+\eta_{2}, \ldots, \varepsilon_{n-3}+\eta_{n-3}\right)}
$$

for all $A_{\left(\sigma_{i}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n-3}\right)}, A_{\left(\sigma_{j}, \eta_{1}, \eta_{2}, \ldots, \eta_{n-3}\right)} \in \mathcal{P}(X)$, the set $\mathcal{P}(X)$ forms a nonabelian group with the neutral element $A_{\left(\sigma_{0}, 0,0, \ldots, 0\right)}=\emptyset$.

All of this means that the set $\mathcal{P}(X)$ together with both operations, the addition and multiplication, deifned above is a nonabelian and commutative nondistributive ring.

If the distibutiveness held in $\mathcal{P}(X)$, writing $A_{\sigma_{i}}$ instead of $A_{\left(\sigma_{i}, 0,0, \ldots, 0\right)}$ for every $i \in\{0,1,2, \ldots, 7\}$, we would obtain

$$
\begin{array}{r}
A_{\sigma_{1}} A_{\sigma_{2}}=A_{\sigma_{1}}\left(A_{\sigma_{1}}+A_{\sigma_{1}}\right)=A_{\sigma_{1}} A_{\sigma_{1}}+A_{\sigma_{1}} A_{\sigma_{1}}=A_{\sigma_{1}} \cap A_{\sigma_{1}}+A_{\sigma_{1}} \cap A_{\sigma_{1}}= \\
=A_{\sigma_{1}}+A_{\sigma_{1}}=A_{\sigma_{2}}
\end{array}
$$

and thus

$$
A_{\sigma_{2}}=A_{\sigma_{2}} \cap A_{\sigma_{2}}=\left(A_{\sigma_{1}}+A_{\sigma_{1}}\right) A_{\sigma_{2}}=A_{\sigma_{1}} A_{\sigma_{2}}+A_{\sigma_{1}} A_{\sigma_{2}}=A_{\sigma_{2}}+A_{\sigma_{2}}=A_{\sigma_{0}}
$$

a contradiction.

Example. Let $Q_{8} \cup\{0\}$ be the noncommutative semigroup with unit and zero, obtained from the quaternion group

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

of order eight by adjoining the zero element.

Assume that elements of the set $Q_{8} \cup\{0\}$ are indexed by elements of the group $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ as follows:

$$
\begin{array}{lll}
x_{(0,0)}=0, & x_{(1,0)}=1, & x_{(2,0)}=-1 \\
x_{(0,1)}=-i, & x_{(0,2)}=i, & x_{(1,1)}=-j \\
x_{(2,2)}=j, & x_{(2,1)}=-k, & x_{(1,2)}=k .
\end{array}
$$

With the addition defined by

$$
x_{(a, b)}+x_{(c, d)}=x_{(a+c, b+d)}
$$

for all $a, b, c, d \in \mathbb{Z} / 3 \mathbb{Z}$, the set $Q_{8} \cup\{0\}$ forms an abelian group.
All of this means that the set $Q_{8} \cup\{0\}$ together with both operations, the addition and multiplication, defined above is an abelian and noncommutative near field.

The left distributiveness does not hold since

$$
i(1+i)=i k=-j
$$

but

$$
i+i^{2}=i-1=j
$$

Definition. Let N be a nondistributive ring, and let $S \subseteq N$ be a multiplicatively closed set. We call a nondistributive ring $S^{-1} N$ a nondistributive ring of left quotients of N with respect to S if there exists a homomorphism $\eta: N \rightarrow S^{-1} N$ of nondistributive rings, for which
(1) $\eta(s)$ is invertible in $S^{-1} N$ for every $s \in S$.
(2) $\eta(s)$ is left distributive in $S^{-1} N$ for every $s \in S$.
(3) every element of $S^{-1} N$ is of the form $\eta(s)^{-1} \eta(n)$ where $n \in N$ and $s \in S$.
(4) $\operatorname{ker} \eta=\{n \in N \mid r(s+n)=r s$ for some $r, s \in S\}$.

For a multiplicatively closed set S in a nondistributive ring N, we let

$$
U=\left\{n \in N \mid r_{2}\left(s_{2}+n r_{1}-s_{1}\right)=r_{2} s_{2} \text { for some } r_{2}, s_{2} \in S\right\} \supseteq S
$$

Theorem. A nondistributive ring N has a nondistributive ring of left quotients $S^{-1} N$ with respect to a multiplicatively closed set $S \subseteq N$ if and only if S satisfies the following conditions
(1) for all $n \in N$ and $s \in S$ there exist $n_{1} \in N$ and $s_{1}, r_{2}, s_{2} \in S$ such that $r_{2}\left(s_{2}+n_{1} s-s_{1} n\right)=r_{2} s_{2}$.
(2) for all $m, n \in N$ and $s \in U$ there exist $r_{1}, s_{1} \in S$ such that $r_{1}\left(s_{1}+s(m+\right.$ $n)-s n-s m)=r_{1} s_{1}$.
(3) for all $m, n \in N$ if $r(s+t m u-t n u)=r s$ for some $r, s, t, u \in S$, then $r_{1}\left(s_{1}+m-n\right)=r_{1} s_{1}$ for some $r_{1}, s_{1} \in S$.
(4) for all $m, n \in N$ if $r(s+m)=r s$ and $t(u+n)=t u$ for some $r, s, t, u \in S$, then $r_{1}\left(s_{1}+m-n\right)=r_{1} s_{1}$ for some $r_{1}, s_{1} \in S$.
(5) for all $m, n \in N$ if $r(s+n)=r s$ for some $r, s \in S$, then $r_{1}\left(s_{1}+m+n-m\right)=$ $r_{1} s_{1}$ for some $r_{1}, s_{1} \in S$.
(6) for all $k, l, m, n \in N$ if $r(s+m-n)=r s$ for some $r, s \in S$, then $r_{1}\left(s_{1}+\right.$ $k m l-k n l)=r_{1} s_{1}$ for some $r_{1}, s_{1} \in S$.

The additional assumption that N is an abelian nondistributive ring (respectively, a commutative nondistributive ring, a left nearring, a right nearring) implies the same for $S^{-1} N$.

Corollary. If S is a multiplicatively closed set in a nondistributive ring N, and if every element of the set U defined above is left distributive in N, then the nondistributive ring of left quotients $S^{-1} N$ exists if and only if S satisfies the following conditions
(1) for all $n \in$ and $s \in S$ there exist $n_{1} \in N$ and $s_{1} \in S$ such that $n_{1} s=$ $s_{1} n$. Analogously as in the ring theory, we call this postulate the left Ore condition with respect to S.
(2) for all $m, n \in N$ if $m s=n s$ for some $s \in S$, then $s_{1} m=s_{1} n$ for some $s_{1} \in S$.

Corollary. If S is a multiplicatively closed set of right cancellable elements in a nondistributive ring N, and if every element of the set U defined above is left distributive in N, then the nondistributive ring of left quotients $S^{-1} N$ exists if and only if N satisfies the left Ore condition with respect to S. Under the additional assumption that every element of S is also left cancellable, the nondistributive ring N embeds into the nondistributive ring of left quotients $S^{-1} N$.

Corollary. If a nondistributive ring N satisfies both the right cancellation law and the left Ore condition with respect to a multiplicatively closed set $S \subseteq N$, and if every element of the set U defined above is left distributive in N, then
(1) every element of U is also left cancellable.
(2) the nondistributive ring N embeds into the nondistributive ring of left quotients $S^{-1} N$.

Example. Any (not necessarily unital) ring R, in which the circle operation

$$
x \circ y=x+y-x y
$$

where $x, y \in R$, substitutes for the multiplication, satisfies only the first two of postulates from the definition of a nondistributive ring.

The neutral element of the addition is also the neutral element of the circle operation.

